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INTRODUCTION

Observations in ice-covered lakes show that in late
spring the bulk of water is vertically well mixed and
characterized by an almost constant temperature with
depth [1–4]. It is found that the mixing is caused by
convection driven by a vertically inhomogeneous heat-
ing due to absorption of solar radiation penetrating into
the water beneath the ice. At a water temperature above
the temperature of maximum density, convection in the
upper oceanic layer (see, for example, [5]) and in fresh-
water lakes (see, for example, [6]) also depends on the
intensity of solar heating and the character of solar radi-
ation absorption. However, when the water temperature
is higher than the temperature of maximum density, the
source of convective motions is a surface cooling, while
radiation heating increases the static stability of water
column and, thus, hinders the mixed layer deepening.
At a temperature below the temperature of maximum
density, the regime of convection in freshwater lakes
has a quite different character. Under this regime, solar
heating results in an unstable water column and, thus,
initiates convective motions. This work is devoted to
this regime of convection. On the basis of observational
data and some common physical considerations, the
convective length, velocity, and temperature scales are
used to describe the convection regime under consider-
ation. On the basis of the introduced scales and the sim-
ilarity hypotheses for the vertical profiles of tempera-
ture and turbulence characteristics, a simple parame-
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trized model of a convective mixed layer is proposed.
The calculation results obtained using the proposed
model are compared to the observational data. The
entrainment regimes characteristic of convection in ice-
covered lakes are analyzed. Different versions of the
entrainment equation to describe the type of convection
under study are discussed (see [1, 2, 7]).

The first systematic observations of spring convec-
tion in an ice-covered freshwater lake were carried out
by Farmer [1]. Water temperature was measured with a
bathythermograph and the thermistor chains in Lake
Beibin in the western part of Canada from February 1
to April 15, 1973, which allowed Farmer to follow the
occurrence and development of a convective mixed
layer. Farmer was apparently the first who analyzed
theoretically the development of convective instability
in the ice-covered lake due to a vertically inhomoge-
neous radiation heating and proposed a highly reliable
model of the convection regime under consideration.

Petrov and Sutyrin considered the diurnal cycle of
convection beneath the ice [2]. Using the data of obser-
vations and a simple model of the phenomenon, they
analyzed some regimes of convective mixed layer
deepening, which were realized at different times of the
day.

The detailed observations of convection beneath the
ice were carried out in Lake Vendyurskoe, Karelia, in
the spring of 1995 [3, 4, 8, 9]. Compared to the field
investigations performed earlier, the temperature was
measured with a higher resolution along the vertical. In
particular, detailed data were obtained on temperature
distribution in a thin stably stratified layer separating

 

Spring Convection in Ice-Covered Freshwater Lakes

 

D. V. Mironov

 

1, 2

 

* and A. Yu. Terzhevik

 

1, 3

 

1

 

 Institute for Lake Research, Russian Academy of Sciences, ul. Sevast’yanova 9, St. Petersburg, 196105 Russia

 

2

 

 Alfred Wegener Institute for Polar and Marine Research, Bussestr. 24, Bremerhaven, D-27570 Germany

 

3

 

 Department of Water Resources Engineering, Lund University, P.O. Box 118, Lund, S-221 00 Sweden
e-mail: ark@geo.ua.pt

 

Received June 8, 1999

 

Abstract

 

—The regime of penetrative convection driven by a vertically inhomogeneous radiation heating is
considered. Similar convection is observed in ice-covered freshwater lakes, where the water temperature is
below the maximum-density temperature during late spring. The convective length, velocity, and temperature
scales are introduced, which are suitable for the description of convection driven by a vertically inhomogeneous
heating. On the basis of these scales and the similarity hypotheses for the vertical temperature profiles and tur-
bulence characteristics in the convective mixed layer, a simple model of the convection regime under consider-
ation is proposed. The entrainment regimes characteristic of the convection in ice-covered lakes are studied. It
is shown that such convection is satisfactorily described by the equation used for convection in both the atmo-
spheric and oceanic layers if the Deardorff convective scales based on the buoyancy flow through a fluid surface
are replaced by the convective scales, which take into account the three-dimensional character of radiation
absorption. The results of model calculations are in good agreement with observational data.
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the convective mixed layer from the ice undersurface.
Moreover, direct measurements of solar radiation
reaching the ice undersurface were taken.

The accumulated empirical data imply the follow-
ing qualitative picture of the phenomenon. In winter
and early spring, the snow that covers the ice hinders
the penetration of solar radiation into the water through
the ice. Variations in the water temperature are due to
molecular heat transfer, and, therefore, they are very
slow. As the snow is melting, solar radiation begins to
penetrate through the ice into the water. Radiation heat-
ing of the water column is inhomogeneous along the
vertical: the upper layers receive more heat than the
lower ones. As a result of heating, a portion of the water
column becomes hydrostatically unstable, and convec-
tion occurs. The convection forms a well-mixed layer
with a constant or almost constant temperature in
depth. A rapid temperature difference within a thin
layer on the lower boundary of the mixed layer shows
that convection is penetrative.

An analysis of the temperature profiles within a
period of penetrative convection (see, for example,
Fig. 16 in [3]) allows one to distinguish four layers.
Within a relatively thin surface layer just beneath the
ice, the water temperature increases rapidly from the
freezing temperature at the water–ice interface to the
value characteristic of the bulk of the mixed layer. Con-
vective motions in the mixed layer provide its tempera-
ture uniformity along the vertical. The thermocline
characterized by a rapid increase of temperature with
depth is formed on the lower boundary of the mixed
layer. This thermocline can be identified with a layer of
turbulent entrainment, in which the lower denser water
is entrained by turbulent disturbances. Below this layer,
there is a stably stratified undisturbed layer, in which
temperature variations are due to solar radiation
absorption and molecular heat transfer.

Both the depth and temperature of the mixed layer
increase with heating. It is very important that the
evolving temperature profile holds its four-layered
structure. This makes it possible to use a self-similar
parametric representation of the temperature profile
within a period of penetrative convection.

HEAT BUDGET
Let us use the quadratic equation of the freshwater

state:
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Let us take the following representation of the verti-

cal temperature profile within the period of penetrative
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 (see, for example, Fig. 15
in [3]). Turbulence in the surface layer is suppressed by
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). In accordance with a rough
character of our model, we will not consider the prop-
erties of the transition zone between the turbulized
mixed layer and the nonturbulized layer immediately
beneath the lower ice surface, and we shall extend the
“molecular” solution up to the upper boundary of the
mixed layer. Let us assume that the regime of heat
transfer in the surface layer may be treated as quasi-sta-
tionary. At 
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 = 0, the solution of the heat conduction
equation given above has the following form:
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condition of a smooth joining of the temperature profile
on the lower boundary of the surface layer, 
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. The described parametrization of the surface
layer was proposed by Barnes and Hobbie [11].

In the undisturbed region, which is below the
entrainment layer, the water temperature is determined
from the heat conduction equation. Neglecting the
molecular heat transfer, we obtain the following
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expression:

 

(4)

 where  θ  
ini

 (  z  )   is the initial temperature profile.

In the mixed layer, the molecular heat flux is equal
to zero. Here, the heat transfer equation has the form
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∂z – ∂I/∂z, where Q is the vertical turbulent
kinematic heat flux (i.e., the heat flux divided by ρcp).
In view of (2), we integrate this equation with respect
to z between δ and h and obtain the equation for the heat
budget in the CML:

(5)

where Q(h) = –∆θdh/dt is the kinematic heat flux due
to entrainment on the lower boundary of the mixed
layer. The profile of the vertical turbulent kinematic
heat flux in the CML has the form

(6)

where ζ = (z – δ)/(h – δ) is the dimensionless vertical
coordinate. In both the surface and undisturbed layers,
the turbulent heat flux is equal to zero.

To obtain the entrainment equation, which describes
the variations in the CML depth h with time, we intro-
duce the convective length, velocity, and temperature
scales necessary to normalize the turbulence character-
istics and to formulate the similarity hypotheses.

CONVECTIVE LENGTH, VELOCITY, 
AND TEMPERATURE SCALES

In the studies of convective flows, the following
length, velocity, and temperature scales proposed by
Deardorff [12, 13] are widely used:

(7)

where h is the depth of the lower boundary of the con-
vective layer, β = gαT is the buoyancy parameter (αT is
the thermal expansion coefficient and g is the gravita-
tional acceleration), and Qs is the kinematic heat flux
through the fluid surface. The Deardorff scales are
applied to the flows in which the surface buoyancy flow
is the source of convective motions. These scales can-
not be used to describe the convection regime consid-
ered in this work. The point is that the vertically inho-
mogeneous solar heating is the driving force of convec-
tion beneath the ice. Its energetics has nothing to do
with the molecular heat flux at the water–ice interface.

Let us introduce the following natural length, veloc-
ity, and temperature scales, which take into account the
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where the lower index R is used instead of an asterisk to
avoid confusion with the Deardorff scales. The negative
sign in the expression for the velocity scale provides
positiveness of wR (according to the state equation (1),
the buoyancy parameter is the temperature function
β(θ) = gaT(θ – θr) and is negative at θ = θm < θr).

By analogy with the Deardorff scales, the physical
meaning of the convective scales (8) can be demon-
strated. Let us consider the convective layer in which
the source of motions is the surface buoyancy flow. The

value  ≡ hβQs is nothing but twice the velocity of
the turbulent kinetic energy (TKE) generation by the
buoyancy forces in the layer of depth h. This value is
the integral of the vertical buoyancy flow βQ (which
describes the rate of kinetic energy generation through
the potential energy in the balance equation) over the
convective layer. For example, for the atmospheric con-
vective boundary layer free from clouds, in which the
vertical buoyancy flow is a linear function of height,
this integral is equal to 1/2hβQs. In a similar way, the
value –1/2(h – δ)βQR is nothing but the rate of the TKE
generation by a vertically inhomogeneous radiation
heating in the layer of depth h – δ. This can be easily
established by integrating Eq. (6) for z between δ and h.
In this case, the heat flux through entrainment should
be neglected. As the entrainment process requires an
expenditure of kinetic energy, the value of Q(h) cannot
serve as a measure of the TKE generation rate. The

velocity scale  = , which, in contrast

to wR, contains the heat flux through entrainment, was
used in [1] to estimate the velocity of convective
motions in Lake Beibin. Note that, at small values of
the ratio between Q(h) and QR, which was actually the
case for Lake Beibin, the numerical values of the quan-
tities wR and 21/3wR are close to each other. One more
example of geophysical flows, when the energetic con-
siderations lead to the velocity scale similar to , is
the convection in the atmospheric boundary layer with
clouds. The convective velocity scale, which takes into
account a radiation cooling near the upper boundary of
the CML containing stratocumulus, was used by Dear-
dorff to analyze the results of a three-dimensional
numerical simulation [14].

The convective scales (8) should be verified using
the data of direct measurements of the turbulence char-
acteristics and the results of numerical calculations on
the basis of an eddy-resolving model, for example,
large-eddy simulations. This problem is beyond the
scope of this work. We use the proposed scales in for-
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mulating the similarity hypotheses for the vertical pro-
files of the CML turbulence characteristics. The
entrainment equation obtained on this basis is then ver-
ified using empirical data.

ENTRAINMENT EQUATION

Let us use the turbulent energy balance equation
integrated over the mixed layer depth. In the absence of
a shear in the mean velocity, it has the form:

(9)

where e is the turbulent kinetic energy, ε is the turbu-
lence dissipation, Fh is the vertical energy flux at the
lower boundary of the mixed layer. In the context of the
similarity theory [15], let us take a hypothesis of self-
similarity of the regime of turbulence in the CML,
according to which the dimensionless turbulence char-
acteristics (obtained from the normalization with the
aid of the scales of the length h – δ, the velocity wR, and
the temperature θR) are universal functions of the
dimensionless depth ζ = (z – δ)/(h – δ). Then, the energy
and dissipation profiles can be represented in the form

(10)

where Φe and Φε are dimensionless functions.

Energy is transferred outside the CML boundaries
by the radiation of internal gravity waves into the lower
stably stratified layer. The energy flux due to internal
waves is proportional to the value of N3A2λ, where N =
(–β∂θ/∂z)1/2 is the buoyancy frequency, and A and λ are
the wave amplitude and the wavelength, respectively
(see, for example, [16]). According to [17–19], let us
assume that A and λ are proportional to the entrainment
layer depth and estimate the energy flux Fh by using the
formula

(11)

where  is the mean value of the buoyancy frequency
in the undisturbed layer h < z ≤ D, ∆h = h – h0 is the
depth of the layer in which the vertical turbulent heat
flux is negative, h0 is the depth at which this flux is
equal to zero, and Cw is a dimensionless constant. As
the buoyancy frequency varies with depth for z > h, the
value of N (averaged over the undisturbed layer) is
taken as a typical value. The value of ∆h is a rough
value of the entrainment layer depth. The depth z = h0
at which the vertical heat flux profile crosses the ordi-
nate axis (i.e., Q(h0) = 0), is determined from Eq. (6).

After substituting Eqs. (6), (10), and (11) in (9) and
simple transformations, we obtain the entrainment
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equation in the following form:

(12)

Here, Eh = dh/dt is the dimensionless entrainment

rate; Eδ = dδ/dt is the dimensionless rate of time

variations in the surface layer depth; Ri∆ = (h –
δ)∆b is the Richardson number based on a buoyancy
jump in the entrainment layer, ∆b = gaT(θm + 1/2 ∆θ –

θr)∆θ; RiN = (h – δ)2  is the Richardson number
based on the buoyancy frequency in the undisturbed

layer; and De = (h – δ)2d(βQR)/dt is the instability
parameter called the Deardorff number by Zilitinkevich
[17]. It is easily seen that, if the term CeEδ is not taken
into account, Eq. (12) coincides with the entrainment
equation by Zilitinkevich [17, 18] with an accuracy up
to the replacement of βQR by βQs. As shown in [17, 18],
this equation satisfactorily describes different regimes
of convection driven by the surface buoyancy flux in the
atmosphere and ocean and also under laboratory condi-
tions. When βQR is replaced by βQs, the velocity scale
wR is transformed into the Deardorff velocity scale w*,
and the ratio ∆h/(h – δ) is expressed, according to the
known geometric formula, through the entrainment coef-
ficient Ä. This latter is usually determined as the ratio
(taken with an opposite sign) of the buoyancy flux
through entrainment βQ(h) to the buoyancy flux through
the fluid surface βQs. In the case of convection driven by
a vertically inhomogeneous heating, it is logical to deter-
mine the entrainment coefficient as A = –βQ(h)/βQR.

Equation (12) contains three dimensionless con-

stants Cε = 1 – 2 (ζ)dζ, Ce = (ζ)dζ, and

Cw, which must be determined in comparing the results
of calculations of different entrainment characteristics
with experimental data. There is also another way of
determining Cε and ëe—a direct estimate of the inte-
grals of the functions Φε and Φe. The estimates Cε = 0.2,
Ce = 0.8, and Cw = 0.01 were obtained in [17–19] from
laboratory, atmospheric, and oceanic data; in this case,
Cε and ëe are determined in the two ways. We shall use
these values as well.

COMPARISON OF MODEL CALCULATIONS 
WITH EMPIRICAL DATA AND DISCUSSION

OF THE RESULTS

The vertical temperature profiles calculated on the
basis of the model proposed were compared to the data
obtained from the measurements taken in Lake
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Fig. 1. Sequential temperature profiles for Lake Vendyurskoe within the period of penetrative convection. Solid lines correspond to
the profiles calculated on the basis of the model proposed, and dashed lines correspond to the observational data. Dates and local
time are indicated in the left parts of the figures. The observation point depth is 7.7 m.

Fig. 2. Time variations in the CML lower boundary depth h,
water temperature θm in the CML, and the surface layer
depth δ for Lake Vendyurskoe during the period of penetra-
tive convection. Curves correspond to the model data, and
the symbols (pluses, asterisks, and crosses) correspond to
the observational data on mixed layer depth, temperature,
and surface layer depth, respectively.

Fig. 3. Terms of the entrainment equation (12) as time func-
tions. Solid lines at the bottom and at the top denote –Cε and
Ri∆Eh, respectively. The rest of the lines (from bottom to
top): short-dash line corresponds to 2/5CeDe, dotted line
corresponds to –CeEδ, dot-and-dash line corresponds to

CeEh, dashed line corresponds to CwR [∆h/(h – δ)]3, and

heavy line corresponds to R.
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Vendyurskoe, Karelia, in April 1995. A detailed
description of the measurements and a full data set are
given in [3, 4, 9]. Let us assume that the short-wave
solar radiation absorption is described by the exponen-
tial law I(t, z) = Is(t) × exp(–γiz), where Is is the
radiation flux at the water–ice interface, ai are the por-
tions of the total radiation flux for n different spectral
ranges, and γi are the absorption coefficients. Within the
framework of the two-band approximation [3] on the
basis of the data of direct measurements of radiation
flux in Lake Vendyurskoe, the following estimates were
obtained: a1 = a2 = 0.5, γ1 = 2.7, and γ2 = 0.7. The con-
stant value of Is = 8 × 10–6 K m s–1 characteristic of the
observation period was used in the calculations. The
vertical temperature profile evolution during a two-day
period was calculated using the estimates proposed
above and a linear approximation of the initial temper-
ature profile in the undisturbed layer. As is seen from
Figs. 1 and 2, the calculation results are in good agree-
ment with the observational data. It should be stressed
that the values of the constants Cε, Ce, and Cw in the
entrainment equation and also the values of the coeffi-
cients ‡1, ‡2, γ1, and γ2 in the law of short-wave solar
radiation absorption were independently determined
and were not fitted to the calculated values. It should
also be noted that there is a good agreement between
the calculated and experimental values of the surface
layer depth δ. The surface layer model, despite its sim-
plified character, describes the surface layer depth very
accurately. It is needless to say that a consideration of
the diurnal cycle of solar radiation flux will require
some changes in the surface layer model; in particular,
the assumption that the heat transfer regime is quasi-
stationary must be abandoned.

The time variations in different terms of Eq. (12) are
given in Fig. 3. The basic terms in the entrainment equa-

tion are Cε and Ri∆Eh. The term CwR [∆h/(h – δ)]3

is considerably smaller than the two main terms, but
not negligibly small. The rest of the terms are at least
1.5 orders of magnitude smaller. Thus, if the diurnal
cycle of solar radiation flux is not taken into account, the
entrainment regime characteristic of the convection in an
ice-covered lake proves to be very similar to that charac-
teristic of the “typical” conditions in the atmospheric
boundary layer (ABL). In a first approximation, the two
regimes are described by the simplest equation Ri∆Eh =
Cε; i.e., the constant entrainment coefficient Ä = 0.2,
where Ä = –Q(h)/Qs for the ABL and A = −βQ(h)/βQR

for convection beneath the ice. Such an entrainment
regime is accurately simulated in laboratory experi-
ments with a two-layered fluid [18]. Energy transfer by
internal waves outside the CML results in a decrease of
the rate of deepening the mixed layer and, thus, in a
decrease of Ä. Since the entrainment equation (12) is
universal, a successful description of one or another
convection regimes depends primarily on a choice of
the scales of length, velocity, and heat flux (tempera-

aii 1=
n∑

iN
3/2

ture). Good agreement between the theoretical predic-
tions and the empirical values given in Figs. 1 and 2
suggests that the scales (8) are appropriate for the
description of convection driven by a vertically inho-
mogeneous heating in an ice-covered lake.

Farmer [1] described the entrainment efficiency by

the ratio R = – / , which was called

the “energetic” entrainment coefficient by Petrov and
Sutyrin [2]. In the case of convection driven by a sur-
face buoyancy flux, when βQ is a linear function of z,
R = A2. The time variations in R are shown in Fig. 3
(heavy line). For a period of calculations, the mean
value of R is 0.019. This estimate is within the limits of
the scatter in the empirical estimates of R between
0.003 and 0.113 with a mean value of 0.036 obtained
from the measurements in Lake Beibin [1]. (Note that,
in [1], to calculate R, an approximate formula slightly
overestimating R was used.) The calculation of CML
evolution without considering energy transfer by inter-
nal waves outside the mixed layer (i.e., at Cw = 0)
yielded R = 0.024, which corresponds to A = 0.2.

The terms CeEδ and CeDe in (12), which are neg-

ligibly small in our calculations, may prove to be
important under the conditions of a strong instability of
the solar radiation flux, for example, in considering the
diurnal cycle of Is. The term CeEh, which is also small
in our calculations, is the basic term in Eq. (12) (along
with Cε) in the regime of the CML deepening against
the background of neutral stratification in the undis-
turbed region. In this case, if Eδ and De are small,
Eq. (12) is reduced to the simple relation Eh = Cε/Ce.
Petrov and Sutyrin showed that such a regime of CML
deepening is realized in an ice-covered lake during
morning hours [2]. This regime becomes steady after
the sunrise and persists until the lower boundary of the
convective zone reaches the jump layer formed the day
before. Note also that the term CeEh is not small if a
zero jump in temperature at the outer boundary of the
mixed layer (in our calculations ∆θ = 0.1 K at t = 0) is
given as an initial condition. This term is important at
small times until the solution of the problem reaches
the “equilibrium” regime and “forgets” the initial con-
ditions.

The deepening of the mixed layer in stably stratified
fluids that is not accompanied by a temperature jump at
its outer boundary is one more limiting case. This so-
called encroachment regime was first considered by
Zubov [20]. Based on the equation for the CML depth
with R = 0, a model of convection in an ice-covered
lake was considered by Bengtsson [7]. As was shown
by Farmer [1], whose entrainment equation includes
the Zubov asymptotics as one of the limiting cases, the
model with R = 0 underestimates the rate of growth of
the mixed layer depth.

βQ zd
h0

h∫ βQ zd
δ

h0∫

2
5
---
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CONCLUSIONS

The regime of penetrative convection driven by a
vertically inhomogeneous radiation heating is consid-
ered. A similar convection is observed in ice-covered
freshwater lakes, where the water temperature is below
the maximum-density temperature during late spring.
The convective length, velocity, and temperature scales
are introduced, which are suitable for the description of
convection driven by a vertically inhomogeneous radi-
ation heating. On the basis of these scales and the sim-
ilarity hypotheses for the vertical temperature profiles
and turbulence characteristics in the CML, a simple
model of the convection regime under consideration is
proposed. The results of calculations based on this
model are in good agreement with the observational
data.

The proposed convective scales must be carefully
verified using the results of direct measurements of the
turbulence characteristics and also the results of numer-
ical calculations on the basis of an eddy-resolving
model (for example, large-eddy simulation). Recall that
the results of a direct numerical simulation of the con-
vective planetary boundary layer and Rayleigh convec-
tion helped Deardorff to formulate the convective
scales that came to be classical.

In conclusion, let us note that a convection regime
similar to that considered in this paper occurs in fresh-
water pools on the melting sea ice. Since the water in
such pools is actually fresh and its temperature is below
the temperature of maximum density, vertically inho-
mogeneous solar heating will cause convective motions
just as it occurs in freshwater lakes. These two convec-
tion regimes differ from each other by their boundary
conditions. The water surface temperature in freshwa-
ter pools (i.e., temperature at the water–air interface)
varies with time, while in lakes the temperature at the
water–ice interface is fixed at the freezing point. The
near-bottom temperature varies with time in lakes and
is equal to the temperature of freezing in freshwater
pools. From the practical point of view, it is very impor-
tant to know how to calculate the vertical convective
heat transfer in the freshwater pools. Convective
motions intensify heat transfer towards the ice surface
and, thus, affect the process of ice melting.

ACKNOWLEDGMENTS

The authors thank Iohannes Fraitag, Kristian Haas,
and Evgenii Fedorovich for useful discussions and are
grateful to Martin Losh for helpful remarks.

The work was supported by the German Coordina-
tion Center, the WOCE Program (grant no. 03FO157A),
the Pays de la Loire Regional Council (France), Swed-
ish Foundation for International Cooperation in Sci-
ence and Education, the Wenner Gren and Lund Uni-
versity Funds (Sweden), the Russian Academy of Sci-
ences, and the INTAS Program (project no. INTAS
97-0734).

REFERENCES

1. Farmer, D.M., Penetrative Convection in the Absence of
Mean Shear, Q. J. R. Meteorol. Soc., 1975, vol. 101,
pp. 869–891.

2. Petrov, M.P. and Sutyrin, G.G., Diurnal Variation of the
Convection in an Ice-Covered Lake, Meteorol. Gidrol.,
1984, no. 1, pp. 91–98.

3. Malm, J., Terzhevik, A., Bengtsson, L., Boyarinov, P.,
Glinsky, A., Palshin, N., and Petrov, M., Temperature
and Salt Content Regimes in Three Shallow Ice-Covered
Lakes: 1. Temperature, Salt Content, and Density Struc-
ture, Nordic Hydrol., 1997a, vol. 2, pp. 99–128.

4. Malm, J., Terzhevik, A., Bengtsson, L., Boyarinov, P.,
Glinsky, A., Palshin, N., and Petrov, M., Temperature
and Salt Content Regimes in Three Shallow Ice-Covered
Lakes: 2. Heat and Mass Fuxes, Nordic Hydrol., 1997b,
vol. 2, pp. 129–152.

5. Price, J.F., Weller, R.A., and Pinkel, R., Diurnal Cycling:
Observations and Models of the Upper Ocean Response
to Diurnal Heating, J. Geophys. Res., 1986, vol. 91,
pp. 8411–8427.

6. Imberger, J., The Diurnal Mixed Layer, Limnol. Ocean-
ogr., 1985, vol. 30, pp. 737–770.

7. Bengtsson, L., Mixing in Ice-Covered Lakes, Hydrobio-
logia (1st Int. Lake Laboda Symp.), Simola, H., Vil-
janen, M., Slepukhina, T., and Murthy, R., Eds., 1996,
vol. 322, pp. 91–97.

8. Malm, J., Terzhevik, A., Bengtsson, L., Boyarinov, P.,
Glinsky, A., Palshin, N., and Petrov, M., A Field Study of
Thermo- and Hydrodynamics in Three Small Karelian
Lakes during Winter 1994/1995, Lund, Sweden: Dept.
Water Resources Engineering, Inst. of Technology, Univ.
of Lund, 1996, report no. 3197.

9. Bengtsson, L., Malm, J., Terzhevik, A., Petrov, M.,
Boyarinov, P., Glinsky, A., and Palshin, N., A Field Study
of Thermo- and Hydrodynamics in a Small Karelian
Lake during Late Winter 1994, Lund, Sweden: Dept.
Water Resources Engineering, Inst. of Technology, Univ.
of Lund, 1996, report no. 3185.

10. Farmer, D.M. and Carmack, E., Wind Mixing and
Restratification in a Lake near the Temperature of Max-
imum Density, J. Phys. Oceanogr., 1981, vol. 11,
pp. 1516–1533.

11. Barnes, D.F. and Hobbie, J.E., Rate of Melting at the
Bottom of Floating Ice, Geol. Surv. Res., Short Papers in
the Geol. Sci., 1960, pp. B392–B394.

12. Deardorff, J.W., Preliminary Results from Numerical
Integrations of the Unstable Planetary Boundary Layer,
J. Atmos. Sci., 1970, vol. 27, pp. 1209–1211.

13. Deardorff, J.W., Convective Velocity and Temperature
Scales for the Unstable Planetary Boundary Layer and
Rayleigh Convection, J. Atmos. Sci., 1970, vol. 27,
pp. 1211–1213.

14. Deardorff, J.W., Stratocumulus-Capped Mixed Layers
Derived from a Three-Dimensional Model, Boundary-
Layer Meteorol., 1980, vol. 18, pp. 495–527.



634

IZVESTIYA, ATMOSPHERIC AND OCEANIC PHYSICS      Vol. 36      No. 5      2000

MIRONOV, TERZHEVIK

15. Zilitinkevich, S.S. and Deardorff, J.W., Similarity The-
ory for the Planetary Boundary Layer of Time-Depen-
dent Height, J. Atmos. Sci., 1974, vol. 31, pp. 1449–
1452.

16. Thorpe, S.A., Turbulence in Stably Stratified Fluids: A
Review of Laboratory Experiments, Boundary-Layer
Meteorol., 1973, vol. 5, pp. 95–119.

17. Zilitinkevich, S.S., Theoretical Model of Turbulent Pen-
etrative Convection, Izv. Akad. Nauk SSSR, Fiz. Atmos.
Okeana, 1987, vol. 23, no. 6, pp. 593–610.

18. Zilitinkevich, S.S., Turbulent Penetrative Convection,
Aldershot: Avebury Technical, 1991.

19. Fedorovich, E.E. and Mironov, D.V., A Model for Shear-
Free Convective Boundary Layer with Parameterized
Capping Inversion Structure, J. Atmos. Sci., 1995,
vol. 52, pp. 83–95.

20. Zubov, N.N., L’dy Arktiki (Arctic Ices), Moscow: Izd.
Glavsevmorputi, 1945.

Translated by B.L. Dribinskaya


